Program Listing for File lanenet_discriminative_loss.py
↰ Return to documentation for file (codes/lanekerbnetros/lanenet_model/lanenet_discriminative_loss.py
)
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
# @Time : 17-05-2019
# @Author : Zhou Hui
# @Original site : https://github.com/MaybeShewill-CV/lanenet-lane-detection
# @File : lanenet_node.py
"""
Implement discriminative loss function in LaneNet
"""
import tensorflow as tf
def discriminative_loss_single(
prediction,
correct_label,
feature_dim,
label_shape,
delta_v,
delta_d,
param_var,
param_dist,
param_reg):
# Pixels aligned to one line
correct_label = tf.reshape(
correct_label, [
label_shape[1] * label_shape[0]])
reshaped_pred = tf.reshape(
prediction, [
label_shape[1] * label_shape[0], feature_dim])
# Instance number
unique_labels, unique_id, counts = tf.unique_with_counts(correct_label)
counts = tf.cast(counts, tf.float32)
num_instances = tf.size(unique_labels)
# Compute mean vector of pixel embedding
segmented_sum = tf.unsorted_segment_sum(
reshaped_pred, unique_id, num_instances)
mu = tf.div(segmented_sum, tf.reshape(counts, (-1, 1)))
mu_expand = tf.gather(mu, unique_id)
# Compute loss(var) in equ(1) of reference paper
distance = tf.norm(tf.subtract(mu_expand, reshaped_pred), axis=1)
distance = tf.subtract(distance, delta_v)
distance = tf.clip_by_value(distance, 0., distance)
distance = tf.square(distance)
l_var = tf.unsorted_segment_sum(distance, unique_id, num_instances)
l_var = tf.div(l_var, counts)
l_var = tf.reduce_sum(l_var)
l_var = tf.divide(l_var, tf.cast(num_instances, tf.float32))
# Compute loss(dist) in equ(1) of reference paper
mu_interleaved_rep = tf.tile(mu, [num_instances, 1])
mu_band_rep = tf.tile(mu, [1, num_instances])
mu_band_rep = tf.reshape(
mu_band_rep,
(num_instances *
num_instances,
feature_dim))
mu_diff = tf.subtract(mu_band_rep, mu_interleaved_rep)
# Remove the zero point on the mask
intermediate_tensor = tf.reduce_sum(tf.abs(mu_diff), axis=1)
zero_vector = tf.zeros(1, dtype=tf.float32)
bool_mask = tf.not_equal(intermediate_tensor, zero_vector)
mu_diff_bool = tf.boolean_mask(mu_diff, bool_mask)
mu_norm = tf.norm(mu_diff_bool, axis=1)
mu_norm = tf.subtract(2. * delta_d, mu_norm)
mu_norm = tf.clip_by_value(mu_norm, 0., mu_norm)
mu_norm = tf.square(mu_norm)
l_dist = tf.reduce_mean(mu_norm)
# Compute regularization term in the original Discriminative Loss paper
l_reg = tf.reduce_mean(tf.norm(mu, axis=1))
# Combine losses according to the parameters mentioned in the original Discriminative Loss paper
param_scale = 1.
l_var = param_var * l_var
l_dist = param_dist * l_dist
l_reg = param_reg * l_reg
loss = param_scale * (l_var + l_dist + l_reg)
return loss, l_var, l_dist, l_reg
def discriminative_loss(prediction, correct_label, feature_dim, image_shape,
delta_v, delta_d, param_var, param_dist, param_reg):
def cond(label, batch, out_loss, out_var, out_dist, out_reg, i):
return tf.less(i, tf.shape(batch)[0])
def body(label, batch, out_loss, out_var, out_dist, out_reg, i):
disc_loss, l_var, l_dist, l_reg = discriminative_loss_single(
prediction[i], correct_label[i], feature_dim, image_shape, delta_v, delta_d, param_var, param_dist, param_reg)
out_loss = out_loss.write(i, disc_loss)
out_var = out_var.write(i, l_var)
out_dist = out_dist.write(i, l_dist)
out_reg = out_reg.write(i, l_reg)
return label, batch, out_loss, out_var, out_dist, out_reg, i + 1
# TensorArray is a data structure that support dynamic writing
output_ta_loss = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_var = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_dist = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
output_ta_reg = tf.TensorArray(dtype=tf.float32,
size=0,
dynamic_size=True)
_, _, out_loss_op, out_var_op, out_dist_op, out_reg_op, _ = tf.while_loop(
cond, body, [
correct_label, prediction, output_ta_loss, output_ta_var, output_ta_dist, output_ta_reg, 0])
out_loss_op = out_loss_op.stack()
out_var_op = out_var_op.stack()
out_dist_op = out_dist_op.stack()
out_reg_op = out_reg_op.stack()
disc_loss = tf.reduce_mean(out_loss_op)
l_var = tf.reduce_mean(out_var_op)
l_dist = tf.reduce_mean(out_dist_op)
l_reg = tf.reduce_mean(out_reg_op)
return disc_loss, l_var, l_dist, l_reg